Emotions and Punishments in Public Good Experiments: A Biometric Investigation

Andy Cao, Catherine Eckel,

Jinliang Liu, Phatchaya Piriyathanasak,

Sam Priestley, Nanyin Yang, Sora Youn

Texas A&M University

Introduction: Punishment in Public Goods Game

• Public goods game:

- Widely used to study <u>cooperation;</u>
- Each group member allocates own endowment between their private accounts and a common group project;
- All group members <u>equally share</u> the return from the group project;
- Theory prediction: no one contribute to the group project;
- Lab findings: average group contribution converges to zero (Fehr & Gachter, 2000, 2002)
- Costly punishment opportunity in public goods game:
 - Reduce other's earnings at own costs;
 - Costly punishment significantly increases contributions (Fehr & Gachter, 2000, 2002)

Mechanisms: How Does Punishment Work?

- Strategic mechanism: Avoid the loss from being punished.
- Emotional mechanism:
 - Punishing: <u>Anger</u> is an important motivation (Fehr & Gachter, 2002; Cubitt et al., 2011; Dickinson & Masclet, 2014);
 - Being punished: Shame and guilt lead to subsequent cooperation (Hopfensitz&Reuben, 2009).
 - Measure of emotion: self-reported emotional responses;
- Sparse direct evidence of emotions as the mechanism behind the effectiveness of punishment.

Biometrics in Emotional Studies

• Involuntary responses to arousals.

Pupil Dilation

- Pupil dilation:
 - Larger pupil diameter indicates larger cognitive load (Sirois & Brisson, 2014) / higher emotional arousals (Wang et al., 2010)
- Skin conductance response (SCR):
 - When internally or externally aroused, skin momentarily becomes a better conductor of electricity.
- Joffily et al. (2014) used skin conductance response in public goods game:
 - Punishing behaviors are involved with higher psychological arousals.
 - Negative emotions when being punished predict higher subsequent contribution.

Research Question and Contribution

- What we did:
 - Exogenously vary the emotional arousals by varying the punishment rules;
 - Post-punishment rule;
 - Pre-punishment rule.
 - Directly measure the psychological process of participants using pupil dilation and skin conductance response;
- Research question:
 - How would "post" vs. "pre" punishment work differently in increasing cooperation?
 - How does emotion play a role in these two types of punishment?
- Contribution:
 - Develop a new punishment rule that involves less emotional arousals compared with the classical punishment rule in Fehr & Gachter (2000);
 - Provide direct evidence of the emotional mechanism of the effectiveness of punishment.

Experimental Design: Public Goods Game

- Fehr&Gachter (2000) setting
- Each member's endowment:

- Fixed group matching
- Round 1~10: Public goods game without punishment;
- Round 11~20: With Punishment.

Punishment Rules

- Post-punishment (Similar to Fehr & Gachter (2000)):
 - Punishment decisions after contribution decisions;
 - 1 token \rightarrow reduce other's income by 3 tokens
 - They know group members' contributions when making punishment decisions.
- Pre-punishment:
 - Punishment decisions before contribution decisions;
 - Each participant sets a **cutoff** (not observable by others);
 - After contribution decisions, whoever contributes <u>below</u> the cutoff automatically triggers punishment;
 - They do NOT know group members' contributions when making punishment decisions;

\rightarrow Less emotional arousals.

Game Procedures (with Punishment)

Measures of Emotions

Eye Tracker

GSR Device

- Hypothesis 1 (Punishing others): Negative emotions (anger) towards low contributors motivate individuals to punish.
 - H1a: This mechanism is stronger under the post-punishment treatment.
- Hypothesis 2 (Being punished): Negative emotions (shame and guilt) when being punished motivate individuals to contribute more.
 - H2a: This mechanism is stronger under the post-punishment treatment.

Experimental Procedure

- Human Behavior Lab, Texas A&M University.
- Undergraduate participants.
- Between-subject design.
- Post-punishment: 52 participants
 - 36 with pupil dilation data
 - 27 with skin conductance response data
- Pre-punishment: 56 participants
 - 36 with pupil dilation data
 - 23 with skin conductance response data

Results: Punishment Opportunity Increases Contributions

Average Contribution Across Rounds

Both Punishment Rules Increase Contribution Equally Well

Outcome Variable: Contribution			
	(1)	(2)	(3)
	Post	Pre	Whole
WithPun	3.731***	3.913***	3.805***
	(0.940)	(0.793)	(0.621)
WithPun*PrePunishTreatment			0.117
			(0.633)
Round	-0.204*	-0.213***	-0.210***
	(0.0896)	(0.0589)	(0.0521)
Belief	0.733***	0.744***	0.732***
	(0.0565)	(0.0474)	(0.0377)
Demographics	Yes	Yes	Yes
Cluster	Group	Group	Group
_cons	6.835**	7.054^{***}	6.937***
	(2.131)	(1.143)	(1.378)
N	1040	1120	2160

Standard errors in parentheses.* p < 0.05, ** p < 0.01, *** p < 0.001

Biometric Analysis

- Part 1: Punishment decisions
 - Does contributing above group average cause more emotional arousals?
 - Do these emotional arousals predict more punishment?
- Part 2: Experiences of being punished
 - Does being punished cause more emotional arousals?
 - Do these emotional arousals predict higher subsequent contributions?

Biometrics Measures

- Change of biometric measures from baseline (Sirois & Brisson, 2014)
 - Baseline: the average raw biometric measures during the 0.5 second before a scene

• Measure:

 $BioMeasure_t = RawBioMeasure_t - Baseline$

• Take average of *BioMeasure*_t across a scene.

When Viewing Contribution: Larger Pupil for High Contributors

• Pool round 11~20 together.

Under Post Punishment: Higher Arousals Predict More Punishment

	ent Sent (I Ost I unisin	
	(1)	(2)
AboveAverage	0.391***	0.300**
	(0.0876)	(0.0929)
PupilDilation	-0.335	
	(0.252)	
PupilDilation*AboveAverage	0.645	
	(0.403)	
SkinConductance		-0.644
		(0.572)
SkinConductance*AboveAverage		1.612^{*}
		(0.812)
_cons	0.391	0.368
	(0.276)	(0.340)
N	298	270

y)

Other controls: Group FE; round.

Biometric measures are during the scene of viewing contribution. Standard errors in parentheses.^{*} p < 0.05, ^{**} p < 0.01, ^{***} p < 0.001

Under Pre Punishment: Higher Arousals Do NOT Predict Higher Cutoff

Outcome Variable: Cutoff (Pre Punishment Treatment Only)		
	(1)	(2)
AboveAverage _{t-1}	-0.215	0.379
	(0.730)	(0.757)
PupilDilation _{t-1}	2.613	
	(2.224)	
PupilDilation _{t-1} *AboveAverage _{t-1}	-2.832	
	(3.112)	
SkinConductance _{t-1}		5.639*
		(2.453)
SkinConductance _{t-1} *AboveAverage _{t-1}		-12.96**
		(4.955)
_cons	13.10***	12.54***
	(2.627)	(2.413)
N	291	217

Other controls: Group FE; round.

Biometric measures are during the scene of viewing contribution. Standard errors in parentheses.* p < 0.05, ** p < 0.01, *** p < 0.001

When Viewing Punishment: Larger Pupil Dilation When Being Punished

• Pool round 11~20 together.

1

Higher Arousals Do Not Predict More Contribution

Outcome Variable: Contribution_t – Contribution_t-1

	(1)	(2)
	High Contributors	Low Contributors
PupilDilation(ViewPunish) _{t-1}	1.381	3.834
	(2.581)	(3.024)
PupilDilation(ViewPunish) _{t-1} *BePunished _{t-1}	-0.959	-3.921
	(7.142)	(5.263)
PreTreatment*PupilDilation(ViewPunish) _{t-1}	-3.444	-2.602
	(4.526)	(4.258)
PrePunishTreatment*PupilDilation(ViewPunish) _{t-}	17.64	6.539
¹ *BePunished _{t-1}	(10.98)	(7.940)
BePunished _{t-1}	-1.449	3.674***
	(1.244)	(1.034)
PrePunishTreatment	-1.805	-0.622
	(5.791)	(2.450)
PrePunishTreatment*BePunished _{t-1}	1.233	1.078
	(2.194)	(1.479)
_cons	-0.732	4.981
	(5.572)	(3.158)
N	249	299

Other controls: Group FE; round; belief. Standard errors in parentheses.* p < 0.05, ** p < 0.01, *** p < 0.001

Summary of Findings

- Behavioral data:
 - Both punishment rules work equally well in increasing contributions.
- Punishing behaviors:
 - Viewing contribution feedback: <u>high contributors</u> are more aroused than low contributors;
 - Higher arousals of the high contributor predict more punishments, only under <u>post-</u> <u>punishment treatment</u>.
 - \rightarrow Punishing decisions are more impulsive under the post-punishment treatment.
- Being punished:
 - Viewing the punishment feedback: those who <u>are punished</u> are more aroused.
 - This arousal does not encourage individuals to contribute more in the next round.

 \rightarrow Lack of biometric evidence that punishment increases contribution by causing shame and guilt.

- Two punishment rules in public goods game, varying the timing of punishment.
- Direct examination of hypotheses on the emotional mechanism of punishment.
- Punishment decisions with a clear "target" involve stronger emotions.
- Being punished causes stronger emotional arousals, but does not predict higher subsequent contribution.
 - Deviate from Joffily et al. (2014)

Thank You!

Please email me (<u>yangnanyin@tamu.edu</u>) for any further discussion!

Distribution of Contribution Conditional on Being Punished

Distribution of Cutoffs in Pre-Punishment Treatment

Spillovers of Punishment on Subsequent Contributions

	(1)
PunishReceived _{t-1}	0.860^{***}
	(0.113)
PunishReceived _{t-1} *AboveAverage _{t-1}	-1.361***
	(0.329)
PunishReceived _{t-1} *AboveAverage _{t-1} *PreTreatment	nt 0.731
	(0.455)
AboveAverage _{t-1}	-0.894
	(0.582)
PreTreatment	-1.337
	(1.186)
PunishReceived _{t-1} *PreTreatment	-0.0690
	(0.155)
AboveAverage _{t-1} *PreTreatment	-0.886
	(0.826)
_cons	0.293
	(1.489)
N	972

Outcome Variable: Contribution_t – Contribution_t-1

• Being punished increases low contributor's subsequent contribution.

Does Being A High Contributor Cause Higher Arousals?

Outcome variable: Biometric Measures When Viewing Contribution Feedback

	(1)	(2)
	Pupil Dilation	Skin Conductance
PrePunishTreatment	-0.00741	0.0534
	(0.123)	(0.0805)
AboveAverage	0.0679^{*}	-0.0111
	(0.0312)	(0.0229)
ContributeGap	-0.00475	0.000171
	(0.00469)	(0.00305)
PrePunishTreatment*AboveAverage	-0.0590	0.00317
	(0.0453)	(0.0356)
PrePunishTreatment*ContributeGap	-0.00160	-0.00400
	(0.00634)	(0.00451)
AboveAverage*ContributeGap	0.00603	0.00218
	(0.00800)	(0.00576)
PrePunishTreatment*ContributeGap*AboveAverage	0.0126	0.00902
	(0.0113)	(0.00892)
_cons	-0.121	0.0491
	(0.117)	(0.0762)

• Being a high contributor leads to higher arousals.

Does being punished cause higher arousals?

	(1)	(2)
	Pupil Dilation	Skin Conductance
PrePunishTreatment	0.127	0.0570
	(0.0883)	(0.0784)
BeingPunished	0.0466^{*}	0.0101
	(0.0209)	(0.0184)
PrePunishTreatment*BeingPunished	-0.0374	0.00697
	(0.0315)	(0.0296)
_cons	-0.114	0.0481
	(0.0862)	(0.0745)
N	600	482

Larger pupil dilation when being punished.

Ú

Does this arousal lead to more contributions?

Outcome Variable: Contribution_t – Contribution_t-1

	(1)	(2)
	High Contributors	Low Contributors
SkinConductance(ViewPunish) _{t-1}	1.007	11.20
	(2.083)	(8.512)
SkinConductance(ViewPunish) _{t-1} *PunishReceived _{t-1}	-3.774	6.736
	(6.925)	(15.10)
PrePunishTreatment*SkinConductance(ViewPunish) _{t-1}	-5.611	-10.68
	(4.873)	(9.481)
PrePunishTreatment*SkinConductance(ViewPunish) _{t-}	-787.5***	-2.977
1*PunishReceived _{t-1}	(207.7)	(18.83)
PunishReceived _{t-1}	-1.555	5.663***
	(1.452)	(1.082)
PrePunishTreatment	-1.636	-0.620
	(5.375)	(2.035)
PrePunishTreatment*PunishReceived _{t-1}	0.247	-1.423
	(2.613)	(1.712)
cons	-2.378	4.288
• Conditional on being punished, higher	arousal does not p	redict higher
subsequent contributions.		

Skin Conductance Response When Viewing Contribution

Analyzing Skin Conductance Response

